Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Heliyon ; 9(1): e12744, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165334

ABSTRACT

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

2.
Mucosal Immunol ; 15(5): 799-808, 2022 05.
Article in English | MEDLINE | ID: covidwho-1805590

ABSTRACT

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited diminished anti-Spike/RBD IgG levels, although secretory component-associated anti-Spike Ab were more stable. Examining two prospective cohorts we found that participants who experienced breakthrough infections with SARS-CoV-2 variants had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data suggest that COVID-19 vaccines that elicit a durable IgA response may have utility in preventing infection. Our study finds that a local secretory component-associated IgA response is induced by COVID-19 mRNA vaccination that persists in some, but not all participants. The serum and saliva IgA response modestly correlate at 2-4 weeks post-dose 2. Of note, levels of anti-Spike serum IgA (but not IgG) at this timepoint are lower in participants who subsequently become infected with SARS-CoV-2. As new surges of SARS-CoV-2 variants arise, developing COVID-19 booster shots that provoke high levels of IgA has the potential to reduce person-to-person transmission.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , RNA, Messenger/genetics , SARS-CoV-2 , Secretory Component , Vaccination
3.
Sci Adv ; 8(3): eabj9815, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1634773

ABSTRACT

Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle­formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/adverse effects , Canada , Cell Line , Cricetinae , Drug Evaluation, Preclinical , Female , HEK293 Cells , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Liposomes/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/immunology
4.
J Immunol ; 207(10): 2581-2588, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1450886

ABSTRACT

SARS-CoV-2 is a respiratory pathogen that can cause severe disease in at-risk populations but results in asymptomatic infections or a mild course of disease in the majority of cases. We report the identification of SARS-CoV-2-reactive B cells in human tonsillar tissue obtained from children who were negative for coronavirus disease 2019 prior to the pandemic and the generation of mAbs recognizing the SARS-CoV-2 Spike protein from these B cells. These Abs showed reduced binding to Spike proteins of SARS-CoV-2 variants and did not recognize Spike proteins of endemic coronaviruses, but subsets reacted with commensal microbiota and exhibited SARS-CoV-2-neutralizing potential. Our study demonstrates pre-existing SARS-CoV-2-reactive Abs in various B cell populations in the upper respiratory tract lymphoid tissue that may lead to the rapid engagement of the pathogen and contribute to prevent manifestations of symptomatic or severe disease.


Subject(s)
Adenoids/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Mucous Membrane/immunology , Receptors, Antigen, B-Cell/genetics , Respiratory System/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Child , HEK293 Cells , Humans , Immunologic Memory , Lymphocyte Activation , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
5.
Am J Infect Control ; 49(10): 1227-1231, 2021 10.
Article in English | MEDLINE | ID: covidwho-1328688

ABSTRACT

BACKGROUND: The COVID-19 pandemic highlighted the need for evidence-based approaches to decontamination and reuse of N95 filtering facepiece respirators (FFRs). We sought to determine whether vapourized hydrogen peroxide (VHP) reduced SARS-CoV-2 bioburden on FFRs without compromising filtration efficiency. We also investigated coronavirus HCoV-229E as a surrogate for decontamination validation testing. METHODS: N95 FFRs were laced with SARS-CoV-2 or HCoV-229E and treated with VHP in a hospital reprocessing facility. After sterilization, viral burden was determined using viral outgrowth in a titration assay, and filtration efficiency of FFRs was tested against ATSM F2299 and NIOSH TEB-STP-APR-0059. RESULTS: Viable SARS-CoV-2 virus was not detected after VHP treatment. One replicate of the HCoV-229E laced FFRs yielded virus after processing. Unexpired N95 FFRs retained full filtration efficiency after VHP processing. Expired FFRs failed to meet design-specified filtration efficiency and therefore are unsuitable for reprocessing. DISCUSSION: In-hospital VHP is an effective decontaminant for SARS-CoV-2 on FFRs. Further, filtration efficiency of unexpired respirators is not affected by this decontamination process. CONCLUSIONS: VHP is effective in inactivating SARS-CoV-2 on FFRs without compromising filtration efficiency. HCoV-229E is a suitable surrogate for SARS-CoV-2 for disinfection studies.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Decontamination , Disinfection , Equipment Reuse , Hospitals , Humans , Hydrogen Peroxide/pharmacology , N95 Respirators , Pandemics , SARS-CoV-2
6.
Front Immunol ; 12: 659071, 2021.
Article in English | MEDLINE | ID: covidwho-1302109

ABSTRACT

SARS-CoV-2 is a newly emerged betacoronavirus and the causative agent for the COVID-19 pandemic. Antibodies recognizing the viral spike protein are instrumental in natural and vaccine-induced immune responses to the pathogen and in clinical diagnostic and therapeutic applications. Unlike conventional immunoglobulins, the variable lymphocyte receptor antibodies of jawless vertebrates are structurally distinct, indicating that they may recognize different epitopes. Here we report the isolation of monoclonal variable lymphocyte receptor antibodies from immunized sea lamprey larvae that recognize the spike protein of SARS-CoV-2 but not of other coronaviruses. We further demonstrate that these monoclonal variable lymphocyte receptor antibodies can efficiently neutralize the virus and form the basis of a rapid, single step SARS-CoV-2 detection system. This study provides evidence for monoclonal variable lymphocyte receptor antibodies as unique biomedical research and potential clinical diagnostic reagents targeting SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Fish Proteins/immunology , Petromyzon/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Biological Evolution , Cross Reactions , Epitopes, B-Lymphocyte/immunology , Fish Proteins/genetics , Humans
7.
Nat Commun ; 12(1): 3661, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-1275912

ABSTRACT

SARS-CoV-2, the virus responsible for COVID-19, has caused a global pandemic. Antibodies can be powerful biotherapeutics to fight viral infections. Here, we use the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 × 10-14 M are achieved as a result of up to 10,000-fold potency enhancements compared to corresponding IgGs. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and IgG-like bioavailability. The MULTi-specific, multi-Affinity antiBODY (Multabody or MB) platform thus uniquely leverages binding avidity together with multi-specificity to deliver ultrapotent and broad neutralizers against SARS-CoV-2. The modularity of the platform also makes it relevant for rapid evaluation against other infectious diseases of global health importance. Neutralizing antibodies are a promising therapeutic for SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Viral/immunology , Antibody Specificity , Apoferritins/chemistry , Biological Availability , Epitope Mapping , Humans , Immunoglobulin G/immunology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Engineering/methods , Protein Subunits/chemistry , Spike Glycoprotein, Coronavirus/immunology , Tissue Distribution
8.
iScience ; 24(5): 102477, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1201540

ABSTRACT

Type I interferons (IFNs) are our first line of defense against virus infection. Recent studies have suggested the ability of SARS-CoV-2 proteins to inhibit IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into wild-type SARS-CoV-2-mediated induction and inhibition of human type I IFN responses are scarce. Here we demonstrate that SARS-CoV-2 infection induces a type I IFN response in vitro and in moderate cases of COVID-19. In vitro stimulation of type I IFN expression and signaling in human airway epithelial cells is associated with activation of canonical transcriptions factors, and SARS-CoV-2 is unable to inhibit exogenous induction of these responses. Furthermore, we show that physiological levels of IFNα detected in patients with moderate COVID-19 is sufficient to suppress SARS-CoV-2 replication in human airway cells.

9.
CMAJ ; 192(48): E1657-E1661, 2020 Nov 30.
Article in French | MEDLINE | ID: covidwho-951992

ABSTRACT

CONTEXTE: Le recours aux dons de lait maternel pasteurisé est la norme de soins dans les hôpitaux pour les nourrissons ayant un très faible poids à la naissance, afin de faire le pont en attendant que les mères puissent allaiter leur enfant. Le but de cette étude était de vérifier si la pasteurisation à l'aide de la méthode de Holder (à 62,5 °C pendant 30 min) serait suffisante pour inactiver le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) dans des échantillons de lait maternel provenant de donneuses. MÉTHODES: Nous avons inoculé avec le SRAS-CoV-2 des échantillons de lait congelés provenant de 10 donneuses de la Rogers Hixon Ontario Human Milk Bank (la banque de lait maternel de l'Ontario) pour atteindre une concentration finale de 1 × 107 DICT50/mL (50 % de la dose infectante de la culture de tissus par mL). Les échantillons ont été pasteurisés à l'aide de la méthode de Holder ou laissés à la température du laboratoire pendant 30 minutes, puis nous avons mis en culture des dilutions en série sur des cellules Vero E6 durant 5 jours. Nous avons utilisé des échantillons témoins dans cette étude, soit des échantillons de lait provenant des mêmes donneuses, auxquels le virus n'a pas été ajouté (échantillons pasteurisés et non pasteurisés), de même que des réplicats de cellules Vero E6 directement inoculées avec le SRAS-CoV-2. Nous rapportons ici les effets cytopathologiques en DICT50/mL. RÉSULTATS: Nous n'avons détecté aucune activité cytopathologique dans l'ensemble des échantillons de lait contenant le SRAS-CoV-2 pasteurisés à l'aide de la méthode de Holder. Dans les échantillons contenant le SRASCoV-2 qui n'ont pas été pasteurisés, mais plutôt laissés à la température du laboratoire pendant 30 minutes, nous avons observé une réduction du titre infectieux d'environ 1 log. INTERPRÉTATION: La pasteurisation du lait maternel à l'aide de la méthode de Holder (à 62,5 °C pendant 30 min) inactive le SRAS-CoV-2. Ainsi, si du lait maternel provenant de donneuses contenait le virus à la suite d'une transmission par la glande mammaire ou d'une contamination, cette méthode de pasteurisation rendrait le lait sans danger pour la consommation par le nourrisson et la manipulation par les travailleurs de la santé.

10.
J Immunol ; 206(1): 37-50, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-934539

ABSTRACT

There is a pressing need for an in-depth understanding of immunity to SARS-CoV-2. In this study, we investigated human T cell recall responses to fully glycosylated spike trimer, recombinant N protein, as well as to S, N, M, and E peptide pools in the early convalescent phase and compared them with influenza-specific memory responses from the same donors. All subjects showed SARS-CoV-2-specific T cell responses to at least one Ag. Both SARS-CoV-2-specific and influenza-specific CD4+ T cell responses were predominantly of the central memory phenotype; however SARS-CoV-2-specific CD4+ T cells exhibited a lower IFN-γ to TNF ratio compared with influenza-specific memory responses from the same donors, independent of disease severity. SARS-CoV-2-specific T cells were less multifunctional than influenza-specific T cells, particularly in severe cases, potentially suggesting exhaustion. Most SARS-CoV-2-convalescent subjects also produced IFN-γ in response to seasonal OC43 S protein. We observed granzyme B+/IFN-γ+, CD4+, and CD8+ proliferative responses to peptide pools in most individuals, with CD4+ T cell responses predominating over CD8+ T cell responses. Peripheral T follicular helper (pTfh) responses to S or N strongly correlated with serum neutralization assays as well as receptor binding domain-specific IgA; however, the frequency of pTfh responses to SARS-CoV-2 was lower than the frequency of pTfh responses to influenza virus. Overall, T cell responses to SARS-CoV-2 are robust; however, CD4+ Th1 responses predominate over CD8+ T cell responses, have a more inflammatory profile, and have a weaker pTfh response than the response to influenza virus within the same donors, potentially contributing to COVID-19 disease.


Subject(s)
Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Inflammation/immunology , Orthomyxoviridae/immunology , SARS-CoV-2/immunology , Adult , Aged , Female , Humans , Male , Middle Aged
11.
Sci Immunol ; 5(52)2020 10 08.
Article in English | MEDLINE | ID: covidwho-842548

ABSTRACT

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19 , Coronavirus Infections/virology , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
12.
CMAJ ; 192(31): E871-E874, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-639297

ABSTRACT

BACKGROUND: Provision of pasteurized donor human milk, as a bridge to mother's own milk, is the standard of care for very low-birth-weight infants in hospital. The aim of this research was to confirm that Holder pasteurization (62.5°C for 30 min) would be sufficient to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in donated human milk samples. METHODS: We spiked frozen milk samples from 10 donors to the Rogers Hixon Ontario Human Milk Bank with SARS-CoV-2 to achieve a final concentration of 1 × 107 TCID50/mL (50% of the tissue culture infectivity dose per mL). We pasteurized samples using the Holder method or held them at room temperature for 30 minutes and plated serial dilutions on Vero E6 cells for 5 days. We included comparative controls in the study using milk samples from the same donors without addition of virus (pasteurized and unpasteurized) as well as replicates of Vero E6 cells directly inoculated with SARS-CoV-2. We reported cytopathic effects as TCID50/mL. RESULTS: We detected no cytopathic activity in any of the SARS-CoV-2-spiked milk samples that had been pasteurized using the Holder method. In the SARS-CoV-2-spiked milk samples that were not pasteurized but were kept at room temperature for 30 minutes, we observed a reduction in infectious viral titre of about 1 log. INTERPRETATION: Pasteurization of human milk by the Holder method (62.5°C for 30 min) inactivates SARS-CoV-2. Thus, in the event that donated human milk contains SARS-CoV-2 by transmission through the mammary gland or by contamination, this method of pasteurization renders milk safe for consumption and handling by care providers.


Subject(s)
Betacoronavirus/growth & development , Coronavirus Infections/prevention & control , Milk Banks , Milk, Human/virology , Pandemics/prevention & control , Pasteurization/methods , Pneumonia, Viral/prevention & control , Virus Inactivation , COVID-19 , Hot Temperature , Humans , Milk, Human/chemistry , Ontario , SARS-CoV-2 , Time Factors , Viral Plaque Assay
13.
JCI Insight ; 5(19)2020 10 02.
Article in English | MEDLINE | ID: covidwho-737501

ABSTRACT

Most of the patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mount a humoral immune response to the virus within a few weeks of infection, but the duration of this response and how it correlates with clinical outcomes has not been completely characterized. Of particular importance is the identification of immune correlates of infection that would support public health decision-making on treatment approaches, vaccination strategies, and convalescent plasma therapy. While ELISA-based assays to detect and quantitate antibodies to SARS-CoV-2 in patient samples have been developed, the detection of neutralizing antibodies typically requires more demanding cell-based viral assays. Here, we present a safe and efficient protein-based assay for the detection of serum and plasma antibodies that block the interaction of the SARS-CoV-2 spike protein receptor binding domain (RBD) with its receptor, angiotensin-converting enzyme 2 (ACE2). The assay serves as a surrogate neutralization assay and is performed on the same platform and in parallel with an ELISA for the detection of antibodies against the RBD, enabling a direct comparison. The results obtained with our assay correlate with those of 2 viral-based assays, a plaque reduction neutralization test (PRNT) that uses live SARS-CoV-2 virus and a spike pseudotyped viral vector-based assay.


Subject(s)
Antibodies, Neutralizing/immunology , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Area Under Curve , COVID-19 , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive/methods , Neutralization Tests , Pandemics , Regression Analysis , Sampling Studies , Treatment Outcome , Viral Envelope Proteins/immunology , COVID-19 Serotherapy
14.
Emerg Infect Dis ; 26(9): 2054-2063, 2020 09.
Article in English | MEDLINE | ID: covidwho-607956

ABSTRACT

Since its emergence in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected ≈6 million persons worldwide. As SARS-CoV-2 spreads across the planet, we explored the range of human cells that can be infected by this virus. We isolated SARS-CoV-2 from 2 infected patients in Toronto, Canada; determined the genomic sequences; and identified single-nucleotide changes in representative populations of our virus stocks. We also tested a wide range of human immune cells for productive infection with SARS-CoV-2. We confirm that human primary peripheral blood mononuclear cells are not permissive for SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor single-nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine viral genotype and phenotype by using in vitro and in vivo infection models.


Subject(s)
Betacoronavirus , Coronavirus Infections/virology , Leukocytes, Mononuclear/virology , Pneumonia, Viral/virology , Virus Replication/genetics , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genotype , Humans , Kinetics , Pandemics , Polymorphism, Single Nucleotide , SARS-CoV-2 , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL